Technologies for MicroCHP

Dr. Thomas A. Butcher Brookhaven National Laboratory

National Micro-CHP Technology
Pathways Workshop
June 11, 2003

Technologies

- PEM Fuel Cells
- Solid Oxide Fuel Cells
- Reciprocating Engines
- Stirling Engines
- Rankine / LIC Cycles
- Thermoelectrics
- Thermophotovoltaics

Example – Solid Oxide FC - Hexis

A Thermal insulation

B Stack

C. Heat exchanger

D Heat storage tank E Control

F Auxiliary burner

G DC/AC converter

H Gas desulphurisation unit

Water treatment

J Exhaust

Source: Sulzer-Hexis

Example – Solid Oxide FC - Hexis

HXS 1000 Premier

Output: 1 kW electric

2.5 kW thermal (8500 BTU/hr)

Auxiliary burner as needed

Fuel natural gas / steam reformer (oil under development)

Base loaded during heating season
Completed 90,000 hour / 6 unit field test in 2001
Target 400 installed units by the end of 2003
Utilities as owners / operators

Example – Solid Oxide FC - Hexis

Source: Sulzer-Hexis

Example: Organic Cycle - Inergen System

Source: Battelle Columbus Laboratory

Example: Organic Cycle – Inergen System

Output: 2.5 kW Electric @ full load 33 kW thermal 113,000 BTU/hr

T/E = 13.2

Easy grid connection

90%+ overall efficiency

Heat - led

Minimal export of power

Gas-fired, other fuels possible

Energetix microPower Limited – 1/03

Example: Organic Cycle – Inergen System

Example: Liquid Injected – Climate Energy

Example: Liquid Injected – Climate Energy

Oil-free, high efficiency scroll expander Minimal quantity of water in cycle **Commonly available components** No valves **Range of Products Planned** 1-10 kW Warm Air and Hydronic T/E = 8.5Fuel – gas but flexible **Very Active Development**

Example: Liquid Injected – Climate Energy

Planned integration with a warm air furnace – a unique North American innovation

Source: Climate Energy LLC

Military application -Climate Energy

Example – Enginion

Example – Enginion

Example - Enginion

Example: Stirling Engine - Microgen

Source: Microgen

Example: Stirling Engine – Microgen

Output: 1.1 kW Electric

To 38 kW Thermal (130,000 BTU/hr)

Condensing Boiler

Overall Efficiency +90%

+ \$30 million investment to date

Dedicated test facility, 48 units – 24/7

2004 Market Launch - BG Group / Microgen

Fuel – gas, but flexible

Source: Microgen

Example: Stirling Engine – Microgen

Source: Microgen

Example: Stirling Engine – Microgen

Thermoelectric Power Generation

- Pairs of dissimilar conductors generate power
- Many pairs "stacked" to achieve reasonable power levels
- T/E 20
- Fuel flexible, quiet, no moving parts
- Being applied to self-powered appliances

Reference: www . Hi-z.com

Thermophotovoltaic Power Generation

- Ceramic, heated by flame, emits light which generates electric power via photocell
- Matching of light wavelength range to cells critical for high performance
- Under development for military applications

www . Thermopv.org/TPV5-2-51-Horne.pdf

Edtek Hybrid Solar/Fossil System

- •GaSb concentrating TPV cells co-generate electricity (15% eff) and process grade hot water (51%)
- •Receiver overcomes the economic barriers common to renewables by means of a unique concentrator design that achieves a high concentration ratio (1000:1)
- •Secondary revenue stream from the cogenerated hot water produced simultaneously with the electric power.
- •Operates on Solar and/or fossil fuel for 24hour power generation to eliminate expensive batteries.

Edtek System Specifications

Dish diameter

Dish collection aperture

Maximum energy intercepted

Electricity Produced

Hot water produced

Reflector

Collection efficiency

Primary concentration ratio

Tracking

Tracking Accuracy

Control

Night and weather protection

Wind Protection

56 inches

17.1 sq. ft.

1700 watts

500 watts *

100 to 130 gal. /day @ 150F

Glass protected silver

91%

800:1

2 - Axis

+/- 0.2 degrees

On-board Computer

Ground facing stowage

Releases to turn edge-on

* Solar is augmented with fossil fuel in hybrid system

NATIONAL LABORATOR

Issues for microCHP

- Early systems need to be reliable
- The economics need to be there and homeowner needs to be convinced of savings.
- System and interconnect standards needed
- New supply model may be needed

Technologies - when?

- PEM Fuel Cells 2010?
- Solid Oxide Fuel Cells 2005?
- Stirling Engines 2004?
- Rankine Cycles 2005?
- Thermoelectrics self powered
- Thermophotovoltaics in progress

Unique U.S. Considerations

- Warm air furnaces
- Higher value for stand-alone operation
- Higher power level may be needed
- Noise and Size are less critical

Conclusions

- microCHP technologies are receiving a great deal of commercial and technical attention at present.
- This technology offers the potential for a dramatic improvement in the efficiency with which energy resources are use.
- A new model for home "heating" appliance configuration, ownership, and service may be needed.

